Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE

COURSE PLAN

Academic Year FEB 2020

Program:	B E – Computer Science & Engineering	
Semester :	4	
Course Code:	18CSL47	
Course Title:	Design and Analysis of Algorithms Lab	
Credit / L-T-P:	2 / 0-0-2	
Total Contact Hours:	36	
Course Plan Author: Rajesh/Sushma.M/Shilpa		

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara

-

BANGALORE-5600990, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477 www.skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	5
<u>1. Laboratory Overview</u>	
2. Laboratory Content	
3. Laboratory Material	6
4. Laboratory Prerequisites:	7
<u>4. Laboratory Prerequisites:</u> <u>5. Content for Placement, Profession, HE and GATE</u>	
B. Laboratory Instructions	
1. General Instructions	
2. Laboratory Specific Instructions	
C. OBE PARÁMETERS	9
<u>1. Laboratory Outcomes</u>	9
2. Laboratory Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Experiments	
6. Experiments Beyond Syllabus	
D. COURSE ASSESSMENT.	
1. Laboratory Coverage	
Staff Database	
Customer data	
Compute a/b	
Multi thread application	
Quick sort	
Merge sort	
0/1 Knapsack problem using Dynamic Programming	
0/1 Knapsack problem using Greedy Method	
Minimum Cost Spanning Tree using Kruskal's algorithm.	
Minimum Cost Spanning Tree using Kruskal's algorithm. Minimum Cost Spanning Tree using prims algorithm	
All-Pairs Shortest Paths problem	
Traveling Sales Person problem	12
Hamiltonian Cycles	
2. Continuous Internal Assessment (CIA)	<u>12</u>
E. EXPERIMENTS	
Experiment 1a: A Java program to create nStudent objec	<u>ts and print the USN,</u>
Name, Branch, and Phoneof these objects with suitable	headings13
Experiment 1b : A Java program to implement the Stack	using arrays. Write Push(),
Pop(), and Display()	
Experiment 2a : Write a Java program to read and displa	
all three categories	

Staff Database	
Experiment 2b : Write a Java class called <i>Customer</i> to store their name and	
date_of_birth Customer data	
Experiment 3a : A Java program to read two integers a and b. Compute a/b.	and
print, when b is not zero	
Compute a/b	17
Experiment 3b :Multithread application using Java	18
Multithread application Experiment 04 : Quick sort	
Experiment 04 : Quick sort	
Quick sort	
Experiment 05 : Merge Sort	
Merge Sort	<u>20</u>
Experiment 6a : 0/1 Knapsack problem using Dynamic Programming	20
0/1 Knapsack problem using Dynamic Programming	
Dynamic Programming	20
Experiment 6b : 0/1 Knapsack problem using Greedy method	21
0/1 Knapsack problem using Greedy method	21
_Greedy method	<u>21</u>
Experiment 7 : Shortest Path using Dijkstra's algorithm	
Experiment 8 : Minimum Cost Spanning Tree using Kruskal's algorithm	23
Minimum Cost Spanning Tree using Kruskal's algorithm	23
Experiment 9 : Minimum Cost Spanning Tree using Prims Algorithm	24
Minimum Cost Spanning Tree using Prims Algorithm	24
Experiment 10 a : All-Pairs Shortest Paths problem	
All-Pairs Shortest Paths problem	25
Experiment 10 b :Travelling Sales Person problem	<u>26</u>
Travelling Sales Person problem	
Experiment 11: Sum of Subset Problem Sum of Subset Problem	26
Sum of Subset Problem	
Experiment 12: Hamiltonian Cycles using backtracking principle	27
Hamiltonian Cycles	27
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	29
Experiment 03 :	<u>30</u>
Experiment 04 :	<u>30</u>
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	CS
Year / Semester :	2/4	Academic Year:	2019-20
Course Title:	Design And Analysis Of Algorithm Laboratory	Course Code:	18CSL47
Credit / L-T-P:	3/ 01+02	SEE Duration:	3Hrs
Total Contact Hours:	36 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	-
Course Plan Author:	Rajesh/Sushma/Shilpa	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1.		3		
a.	Create a Java class called <i>Student</i> with the following details as variables within it. (i) USN (ii) Name (iii) Branch (iv) Phone Write a Java program to create <i>nStudent objects and</i> print the USN, Name, Branch, and Phone of these objects with suitable headings.		Classes and Objects	L3 Apply
b.	Write a Java program to implement the Stack using arrays. Write Push(), Pop(), and Display() methods to demonstrate its working.		Classes and Objects	L3 Apply
2.		3		
a	Design a superclass called <i>Staff</i> with details as Staffld, Name, Phone, Salary. Extend this class by writing three subclasses namely <i>Teaching</i> (domain, publications), <i>Technical</i> (skills), and <i>Contract</i> (period). Write a Java program to read and display at least 3 <i>staff</i> objects of all three categories.		Classes and Objects	L3 Apply
b	Write a Java class called <i>Customer</i> to store their name and date_of_birth. The date_of_birth format should be dd/mm/yyyy. Write methods to read customer data as <name, dd="" mm="" yyyy=""> and display as <name, dd,="" mm,="" yyyy=""> using StringTokenizer class considering the delimiter character as "/".</name,></name,>		Classes and Objects	L3 Apply
3.		3		
a.	Write a Java program to read two integers <i>a</i> and <i>b</i> . Compute <i>a/b</i> and print, when <i>b</i> is not zero. Raise an exception when <i>b</i> is equal to zero.		Classes and Objects	L3 Apply
b.	Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer for every 1 second; second thread computes the square of the number and prints; third thread will print the value of cube of the number.		Classes and Objects	L3 Apply
4	Sort a given set of <i>n</i> integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of	U U	Divide &Conque	L4 Analyze

	LADORATORY PLAN - CAY 2010-19			
	<i>n></i> 5000 and record the time taken to sort. Plot a graph of the time taken versus <i>n</i> on graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.		r	
5.	Sort a given set of <i>n</i> integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of <i>n></i> 5000, and record the time taken to sort. Plot a graph of the time taken versus <i>n</i> on graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.	3	Divide &Conque r	L4 Analyze
6	Implement in Java, the 0/1 Knapsack problem using	3		L3 Apply
A	Dynamic Programming method		Dynamic Program ming	
В	Greedy method		Greedy method	
7	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Write the program in Java.	3	Greedy method	L3 Apply
8	Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal'salgorithm. Use Union-Find algorithms in your program.	3	Greedy method	L3 Apply
9	Find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.	3	Greedy method	L3 Apply
10	Write Java programs to	3	Dynamic Program ming	L3 Apply
A	Implement All-Pairs Shortest Paths problem using Floyd's algorithm.			
В	Implement Travelling Sales Person problem using Dynamic programming.			
11	Design and implement in Java to find a subset of a given set S = {SI, S2,,Sn} of <i>n</i> positive integers whose SUM is equal to a given positive integer <i>d</i> . For example, if S ={1, 2, 5, 6, 8} and <i>d</i> = 9, there are two solutions {1,2,6}and {1,8}. Display a suitable message, if the given problem instance doesn't have a solution.	3	Backtrack ing	L3 Apply
12	Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of <i>n</i> vertices using backtracking principle.	3	Backtrack ing	L3 Apply

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:,	Availabl	In Lib / In Dept
	2rd Edition, 2009.Pearson.	е	
5,10			
6,7,8,	2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and	Availabl	In Lib⁄ In
18CSL47			

9,11,1 2	Rajasekaran, 2nd Edition, 2014,Universities Press	е	dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
		?	In Lib
		?	Not
			Available
С	Concept Videos or Simulation for Understanding	-	-
C1	· · · · · · · · · · · · · · · · · · ·		
C2			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.cs.duke.edu/courses/fall08/cps224/Book.pdf		
2 3	http://www.cse.iitd.ernet.in/~ssen/csl356/root.pdf		
4	http://www.imsc.res.in/~vraman/pub/intro_notes.pdf		
5	http://www.ics.uci.edu/~goodrich/teach/cs161/notes/		
	http://elearning.vtu.ac.in/06CS43.html		
?			
ſ			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17CSL27	Programming	Data Types,arrays.strings	2		Understa
		in C				nd L2
2	17CSL38	Datastructure	Knowledge on Data Structures	3		Understa
						nd L2
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
1				

3		
3		
5		
-		

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, student should save the experiment with relevant filenames and exit from the Turbo C IDE compiler.	
9	Any damage of the equipment of the computer system will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, Flowchart, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start windows Operating system	
2	Open the eclipse Juno IDE in Windows	
3	To create a project:	
	1. On the main menu bar, click <i>File -> New Project.</i> The New Project wizard opens.	
	2. Select a category from the left column and then select the type of project to create from the right column. To assist in locating a particular wizard, the text field can be used to show only the wizards that match the entered text. Click Next.	
	3. In the Project name field, type a name for your new project.	
	4. (Optional) The project that you create will map to a directory structure in the file system. The default file system location is displayed in the Location field. If you want to create the project and its contained resources in a different location, clear the Use default location checkbox and specify the new location.	
	5. Click Finish. The new project is listed in one of the navigation views.	
4	To create a file:	

	1. folo	In one of the navigation views, right-click the project or der where you want to create the new file.
	2.	From the pop-up menu, select <u>New -> File</u> .
	3. exa	Specify the name of the file, including the file extension (for ample, newfile.java).
	4.	Click Finish.
5	Type the p	rogram
6	Debug the	program
7	Execute the	e Program

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept		Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1		Develop java programs to demonstrate Stack Operation,inheritance, String Tokenized, Exception handling and Multi threading.		Classes and Objects/Sta ck Operation/In heritance/ Multi- threading	trate	presentation	L5 Evaluat e
2		Analyze the time efficiencies of sorting method using Divide and conquer	06	Quick Sort/ Merge Sort	Demons trate	Viva & presentation	L5 Evaluat e
3		Judge knapsack problems using greedy and dynamic programming.	3	Knapsack	Demons trate	Viva & presentation	L5 Evaluat e
4		Judge Shortest path and minimum spanning tree by implementing Dijkstra, Prims and kruskal's using greedy Techniques.	-	Shortest path/minimu m Spanning tree	Demons trate	Viva & presentation	L5 Evaluat e
5	18CSL47.5	Implement Shortest path and Shortest distance by implementing Floyd's algorithm and TSP methods using dynamic programming technique. Appraise generating subset and Hamiltonian cycle using backtracking		Dynamic Programmin g, Generating subset / Hamiltonian cycle	Demons trate	Viva & presentation	L5 Evaluat e
-		Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Multiprocessor computers	CO1	L5
2	Text editors,web browsers	CO1	L5
3	Image processing	CO2	L5
4	Optimization problem	CO2	L5
5	Huffman trees	CO3	L5

6	Mind games, puzzles.	CO3	L5
7	Evaluate traveling sales man problem by using dynamic programming	CO4	L3
8	Apply Branch and Bound for solving combinatorial optimization problems	CO4	L2
9	Able to differentiate NP – Hard and NP – Complete Problems	CO5	L2

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	Мар	ping	Mapping Level	Justification for each CO-PO pair	Lev el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1,2,3	CO1	PO1	3	The knowledge of structure and abstract data type can be applied to solve complex problems.	L6
4,5	CO2	PO2	3	These fundamental concepts of CS can be applied to solve complex problems	L4
		PO3	3	Efficient algorithms can be designed based on their time complexity.	L6
6	CO3	PO2	3	These fundamental concepts of CS can be applied to solve complex problems	-
		PO3	3	Efficient algorithms can be designed based on their time complexity.	
7,8,9	CO4	PO1	3	The knowledge of structure and abstract data type can be applied to solve complex problems.	L6
		PO3	3	Efficient algorithms can be designed based on their time complexity.	-
		PO4	-	Analysis of algorithms helps to select suitable algorithms and reach valid conclusions.	-
10,11 ,12	CO5	PO1	3	The knowledge of structure and abstract data type can be applied to solve complex problems.	L6
		PO2	3	These fundamental concepts of CS can be applied to solve complex problems	-
		PO3	3	Efficient algorithms can be designed based on their time complexity.	-
		PO4	3	Analysis of algorithms helps to select suitable algorithms and reach valid conclusions.	-

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		g with mapping to votifor odon oo		1- 011	.,						·							
-	-	Experiment Outcomes					P	rogi	ram	I OL	itco	me	S					-
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1,2,3		Develop java programs to demonstrate Stack Operation,inheritance, String Tokenized, Exception handling and Multi threading.		3	3	-	3	-	-	-	-	-	-	3	-	-	-	L5
4.5		Analyze the time efficiencies of sorting method using Divide and conquer	3	3	3	-	3	-	-	-	-	-	-	3	-	-	-	L5
6		Judge knapsack problems using greedy and dynamic programming.	1	3	3	-	3	-	-	-	-	-	-	3	-	-	-	L5
7,8,9		Judge Shortest path and minimum spanning tree by implementing Dijkstra, Prims and kruskal's using greedy		3	3	-	3	-	-	-	-	-	-	3	-	-	-	L5

		Taabaiauaa																	
		Techniques.																	
10,11,	18CSL47.5	Implement Shortest path a	and	3	3	3	-	3	-	-	-	-	-	-	3	-	-	-	L5
12		Shortest distance	by																
		implementing Floyd's algorit	hm																
		and TSP methods using dynai	nic																
		programming technique.																	
		Appraise generating subset a	and																
			ing																
		backtracking.																	
		Appraise generating subset a	and																
			ing																
		backtracking. Appra	<u> </u>																
			and																
		Hamiltonian cycle us																	
		backtracking.	ing																
		<u>v</u>		_	-	-		-							-				
-		Average attainment (1, 2, or 3		3	3	3	-	3	-	-	-	-	-	-	3	-	-	-	-
-	PO, PSO	1.Engineering Knowledge; 2.P.	oble	ет	Ar	naly	sis;	3.l	Desi	ign	/	Dev	velo	рт	ent	of	Sc	oluti	ons;
		4.Conduct Investigations of Col	nple	ex I	Prol	bler	ns;	5.M	lode	ern	Тоо	l Us	sage	e; 6.	The	e En	gin	eer	and
		Society; 7.Environment and Sustainability							thic	S;	9.lı	ndiv	vidu	al	an	d	Теа	тw	ork;
		D.Communication; 11.Project Management and Finance; 12.Life-long Learnin									ning;								
		S1.Software Engineering; S2.Da	ta B	ase	e Mo	ana	gen	nen	t; S	3.W	eb l	Des	ign	•		-			-

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		No	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Student Class and Object Creation	1.5	1	-	1	-	-	-	1	CO1	L5
	using Java										
2	Stack	1.5	1		1					CO1	
3	Staff Database	1.5	1	-	1	-	-	-	1	CO1	L5

LABORATORY PLAN - CAY 2018-19

4	Customer data	1.5	1	-	1	-	-	-	1	CO1	L5
											-
5	Compute a/b	1.5	1	-	1	-	-	-	1	CO1	L5
6	Multi thread application	1.5	1	-	1	-	-	-	1	CO1	L5
7	Quick sort	03	1	-	1	-	-	-	1	CO2	L5
8	Merge sort	03	1	-	1	-	-	-	1	CO2	L5
	0/1 Knapsack problem using Dynamic Programming	1.5	1	-	1					CO3	
	0/1 Knapsack problem using Greedy Method	1.5	1	-	1	-	-	-	1	CO4	L5
	Shortest Path using Dijkstra's algorithm	3	-	1	1	-	-	-	1	CO4	L5
12	Minimum Cost Spanning Tree using Kruskal's algorithm	3	-	1	1	-	-	-	1	CO4	L5
13	Minimum Cost Spanning Tree using prims algorithm	3	-	1	1	-	-	-	1	CO4	L5
14	All-Pairs Shortest Paths problem	1.5	-	1	1	-	-	-	1	CO3	L5
15	Traveling Sales Person problem	1.5	-	1	1	-	-	-	1	CO3	L5
16	Sum of subset problem	3	-	1	1					CO5	L5
17	Hamiltonian Cycles	3	-	1	1				1	CO5	L5
-	Total	36	7	8	5	5	5	5	20	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1,CO2,CO3,CO4	L3,L4
CIA Exam – 2	40	CO3,CO4,CO5	L3
CIA Exam – 3	40	CO1,CO2,CO3,CO4,CO5	L3,L4
Assignment - 1	-	_	_
Assignment - 2	-	-	-
Assignment - 3	-	-	-
	-	-	-
Seminar - 1	-	-	-
Seminar - 2	-	-	-
Seminar - 3	-	-	-
	-	-	-
Other Activities – define –	-	-	-
Slip test			
Final CIA Marks	40	-	_

SNo	Description Marks						
1	Observation and Weekly Laboratory Activities	05 Marks					
2	Record Writing	15 Marks for each Expt					
3	Internal Exam Assessment	20Marks					
4	Internal Assessment	40 Marks					
5	SEE	60Marks					
-	Total	100 Marks					

_

E. EXPERIMENTS

Experiment 1a: Student Class and Object Creation using Java

-	Experiment No.:	1a Marks	Date Planned	Date Conducted
1	Title		n to create <i>nStudent</i> object lese objects with suitable h	s and print the USN, Name, Branch, leadings.
2	Course Outcomes	Develop java p Multithreading		Inheritance, Exception handling and
3	Aim	it. USN Name Branch Phone create <i>nStuden</i>		e following details as variables within N, Name, Branch and Phone of these
4	Material / Equipment Required	tLab Manual		
5	Theory, Formula Principle, Concept	,Object oriented	d Concepts	
6	Procedure, Program Activity, Algorithm Pseudo Code	[,] Branch, Phone 2. Read the nur 3. Read each st	mber of student objects to udent object details (USN	
7	Block, Circuit, Mode Diagram, Reactior Equation, Expected Graph	1		
8	Observation Ta bte Look-up Table Output	er the no. of stu ,2 enter student c enter student r krishna enter student u 1KT17IS12	details name	

		enter student branch ISE enter student ph.no 9004565467 enter student name Hema enter student usn 1KT17IS18 enter student branch CSE enter student ph.no 9884543678
		USN name branch phone 1KT17IS12 krishna ISE 9004565467
		1KT17lS18 Hema CSE 9884543678
	Sample Calculations	-
	Graphs, Outputs	-
	Results & Analysis	-
12	Application Areas	Computer Science
13	Remarks	-
14	Faculty Signature with Date	_

Experiment 1b : Stack

-	Experiment No.:	1b	Marks		Date Planned		Date Conducted	d
	Title	Displ	ay()methods	implement t to demonstra	ate its worki	ng.	rite Push(), I	Pop(), and
2	Course Outcomes	Multi	threading.			Inheritance,	Exception	handling and
3	Aim	Imple	ementation c	of stack opera	tions			
4	Equipment Required		Manual					
5	Theory, Formula, Principle, Concept	Pop (Operations Operations ay Operatior	IS				
6	Algorithm, Pseudo Code	Step Step if stac Step if stac Step	3: Push integ ck is full give 3: Pop eleme ck is empty g	ack size MAX ger element o a message a ent from stack give a messag ether the stac	n to stack ar is 'Stack is O < along with je as 'Stack i	nd display the verflow'. display the s s Underflow'	stack conter	
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	II.						
8	Observation Table, Look-up Table, Output	press press press Enter 1	2 to push et 2 to pop et 3 to display 4 to exit your choice element:	ement elements				

The 10is pushed into the stack	
Enter your choice:	
Enter element:	
20	
The 20 is pushed into the stack	
Enter your choice:	
Enter element:	
30	
The 30is pushed into the stack	
Enter your choice:	
Enter element:	
40 Francis (Choold Oxean Depart	
Error !Stack Overflow	
Enter your choice:	
3 Elements in stack	
10 20	
30	
Enter your choice:	
The 30 is poped out of the stack	
Enter your choice:	
2	
The 20 is poped out of the stack	
Enter your choice:	
2	
The 10 is poped out of the stack	
Enter your choice:	
2	
error stack underflow	
Enter your choice:	
3	
Stack Empty	
Enter your choice:	
4	
Program stopped	
9 Sample Pushing the elements	
Calculations Poping the elements	
Checking the stack content form Palindrome	
Check overflow and underflow conditions	
10 Graphs, Outputs -	
11 Results & Analysis -	
12 Application Areas Code and debug the operations of stack	
13 Remarks	
-	
14 Faculty Signature with Date	

Experiment 2a : Staff Database

-	Experiment No.:	2a	Marks	Date Planned	Date Conducted	
1		Write a Java program to read and display at least 3 <i>staff</i> objects of all three categories.				
2		1	Develop java programs to demonstrate Inheritance, Exception handling and Multithreading.			

-	[a:	
3	Aim	Understanding the concepts of inheritance and accessing the members of super class and sub class
4	Equipment	Lab Manual
	Required	
	Principle, Concept	Object oriented Concepts
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step1:create a Super calss with the name staff and define required parameter Step2. Create subcalss named Teaching and extend the super class staff facilities Step3. Create subclass named Technical and extend the super class staff facilities Step4. Create the subclass Contract and extend the super class facilities staff facilities
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table,	Enter your category:1. Teaching, 2. Technical. 3.Contract
	Look-up Table,	
	Output	Enter SID,Salary,Name,Phone,domain and Publications 001
		50000
		Ārun
		9888888888 An almoid
		Android Journal
		Enter SID,Salary,Name,Phone,domain and Publications
		002
		200000 Manai
		Manoj 7888888888
		Netwoking
		International
		Enter SID,Salary,Name,Phone,domain and Publications
		003 300000
		Vinay
		877777777
		Cloud Journal
		Staff ID:1
		Salary:50000
		Name:98888888888
		Phone:Arun Domain:Android
		Publication:Journal
		Staff ID:2
		Salary:200000 Name:78888888888
		Phone:Manoj
		Domain:Netwoking
		Publication:International
		Staff ID:3
		Salary:30000
		Name:877777777
		Phone:Vinay
		Domain:Cloud

		Publication:Journal
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 2b : Customer data

-	Experiment No.:	2b	Marks		Date Planned		Date Conducted	
1	Title		e a Java c _of_birth.	lass called	Customer	to store th	eir name ar	nd
2			op java pr hreading.	ograms to d	emonstrate	Inheritance,	Exception h	andling and
3	Aim	on the	rstanding th e basis of ent delimite		of StringToke	nizer class a	nd separating	the strings
	Equipment Required		lanual					
	Theory, Formula, Principle, Concept	String	Tokenizer					
	Program, Activity,	2. Rea 3. Cre	d the date ate a metho	of birth in the od to read the		ormat	d features tring and print	t
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Look-up Table, Output	vikran Enter 01/01 Custo		DOB in the fo	rmat dd/mm	Лууу		
	Sample Calculations							
	Graphs, Outputs							
-	Results & Analysis							
	Application Areas							
	Remarks							
	Faculty Signature with Date							

Experiment 3a : Compute a/b.

-	Experiment No.:	5	Marks		Date Planned	Date Conducted	
					Planned	Conducted	
1			A Java program to read two integers a and b . Compute a/b and print, when b is				
		not zero.Raise an exception when b is equal to zero.					
2		1	Develop java programs to demonstrate Inheritance, Exception handling and Multithreading.				

2	Aim	Compute a/b and print, when b is not zero. Raise an exception when b is equal
3		to zero.
		Lab Manual
5		Object Oriented Concepts
	Program, Activity, Algorithm, Pseudo	1. Read two intergers a and b 2. Compute division a/b 3. If b is not zero print the result without exception 4. If b = 0 print the exception by using Java maths exceptions
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Sample 1: Please enter first number (numerator): 10 Please enter second number (denominator): 5 Division result of 10/5= 2.0 Sample2: Please enter first number (numerator): 10 Please enter second number(denominator): 0 Exception Condition Program is ending
	Sample Calculations	
	Graphs, Outputs	
	Results & Analysis	
-	Application Areas	
-	Remarks	
	Faculty Signature with Date	

Experiment 3b :Multithread application using Java

-	Experiment No.:	3p	Marks		Date Planned	Date Conducted			
1	Title	Multi	thread applic	cation					
2	Course Outcomes	1	velop java programs to demonstrate Inheritance, Exception handling and Iltithreading.						
3	Aim					g by creating three threads that spended for some time duration.			
4	Material / Equipment Required	Lab N	Manual						
5	Theory, Formula, Principle, Concept	Obje	ct Oriented C	Concepts					
	Program, Activity, Algorithm, Pseudo Code	2. Cre 3. Firs 4. Se	eate three thr st thread is fo cond thread	is for square	read library. random intege of the number	er. generated by first thread. ber generated by first.			

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Look-up Table, Output	first thread generated number is77 Second thread:Square of the number is5929 third thread:Cube of the number is456533 first thread generated number is76 Second thread:Square of the number is5776 third thread:Cube of the number is438976 first thread generated number is14 Second thread:Square of the number is196 third thread:Cube of the number is2744
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

Experiment 04 : Quick sort

-	Experiment No.:	4	Marks		Date	Date				
					Planned	Conducted				
1	Title	Quick	lick sort							
						algorithms using language feature	S.			
3	Aim					sing Quick sort and n elements versus n.				
	Material / Equipment Required		1anual							
	Theory, Formula, Principle, Concept									
	Procedure, Program, Activity, Algorithm, Pseudo Code	1. 2. 3. 4. 5. 6. 7. 8.	Generate Record st Call Quick Record th Calculate Print the s Repeat th	art time befor sort function e end time af the time requ sorted ' n' eler e above steps	e sorting to sort n ele ter sorting uired to sort nents and tin s for differen	sing random number generator ements n elements using Quick sort. me taken to sort. t values of n as well as to ge case complexity.				
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table, Look-up Table, Output	5010 The a 336 12 The a 3914	array elemer 273 ***Quick Sor rray elemen	nts before sor t Algorithm *** its after sortin	ting are: 261	00 3 543 3551 3898 3914 2880 671 2 43 671 1273 2303 2613 2880 3551 3				

9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 : Merge Sort

-	Experiment No.:	7	Marks		Date Planned		Date Conducted			
1	Title	Merg	lerge Sort							
2	Course Outcomes	Analy	nalyze and compare the performance of algorithms using language features.							
3	Aim		sort 'n' randomly generated elements using Merge sort and otting the graph of the time taken to sort n elements versus n.							
	Material / Equipment Required		o Manual							
-	Theory, Formula, Principle, Concept	Divide	e & Conquer							
	Procedure, Program, Activity, Algorithm, Pseudo Code	2. 3. 4. 5. 6. 7.	 Declare time variables Generate 'n ' elements randomly using random number generator Record start time before sorting Call Quick sort function to sort n elements Record the end time after sorting Calculate the time required to sort n elements using Quick sort. Print the sorted ' n' elements and time taken to sort. Repeat the above steps for different values of n as well as to demonstrate worst, best and average case complexity. 							
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph					<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
8	Observation Table, Look-up Table, Output	5010 The a 336 12 The a 3914	nray elemer 273 ***Quick Sort rray elemen	its before so t Algorithm ** ts after sortir	rting are: 261	3 543 3551 (3898 3914 28 2303 2613 288			
9	Sample Calculations									
10	Graphs, Outputs									
11	Results & Analysis									
	Application Areas	Image	e Processing							
-	Remarks									
	Faculty Signature with Date									

-	Experiment No.:	8	Marks		Date		Date				
1	Title	0 /1 1	(non or -1,		Planned		Conducted				
			/1 Knapsack problem using Dynamic Programming								
2	Course Outcomes	Trave	emonstrate Dynamic Programming using 0/1 Knapsack,Floyd's Algorithm and avelling Sales Person problem,								
3	Aim		choose the set of items that fits in the knapsack and maximizes the profit. /en a knapsack with maximum capacity <i>W</i> , and a set <i>S</i> consisting of <i>n</i> items.								
•	Material / Equipment Required	Lab N	Manual								
5	Theory, Formula, Principle, Concept	Dyna	mic Progran	nming							
	Algorithm, Pseudo Code	//Ou Steps // Ini • Rep set V • Rep Set V //cor • Rep repea if (wi if (wi	tput: V(n,W) s: tialization of peat for i = 0 t (i,0) = 0 peat for j = 0 t (0,j) = 0 mplete rema peat for i = 1 t at for j = 1 to '	first column to n to W aining entries o n W max{ V(i-1,j), V	sack) Input: n and first row (row by row /(i-1,j-wi) + vi }	elements	W – all intege	ers			
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output		r the numbe	er of element:	S						
		Enter Enter the p	the weight	of the eleme acity of knap is:70		30					
	Sample Calculations										
	Graphs, Outputs										
	Results & Analysis										
	Application Areas	Imag	e Processino	9							
-	Remarks										
	Faculty Signature with Date										

Experiment 6a : 0/1 Knapsack problem using Dynamic Programming

Experiment 6b : 0/1 Knapsack problem using Greedy method

-	Experiment No.:	9	9 Marks Date Date						
					Planned		Conducted		
1	Title	0/1 K	/1 Knapsack problem using Greedy method						
2	Course Outcomes		Demonstrate Greedy method using 0/1 Knapsack,Dijkstra's Algorithm,Kruskal's						
3	Aim	To ch	To choose the set of items that fits in the knapsack and maximizes the profit.						
18CS	8CSL47								

		Given a knapsack with maximum capacity W , and a set S consisting of n items.
4		Lab Manual
	Equipment	
	Required	
-	Theory, Formula,	Greedy method
	Principle, Concept	
		Assume knapsack holds weight W and items have value vi and weight wi
	Program, Activity,	
	Ŭ	o Thus: vi / wi ≥ vj / wj, for all i ≤ j
	Code	Consider items in order of decreasing ratio
		Take as much of each item as possible based on knapsack's capacity
	Block, Circuit,	-
	Model Diagram,	
	Reaction Equation,	
	Expected Graph Observation Table,	Enter no of itoms
	Look-up Table,	
		4 Enter the weights of each items
		5
		10
		15
		-0
		Enter the profits of each items
		12
		13
		14
		15
		Enter capacity of knapsack :
		18
		Quantity of item number: 1 added is 5
		Quantity of item number: 2 added is 10
		Quantity of item number: 3 added is 3
	Sampla	The total profit is 27.8
9	Sample Calculations	
10	Graphs, Outputs	
	Results & Analysis	
	Application Areas	
	Remarks	
-	Faculty Signature	
	with Date	
L		

Experiment 7 : Shortest Path using Dijkstra's algorithm

			-	-			
-	Experiment No.:	10	Marks		Date Planned	Date Conducted	
1	Title	Short	est Path usin	g Dijkstra's a	lgorithm		
2			onstrate Gree rithm and priv			napsack,Dijkstra's Algorith	nm,Kruskal's
3	Aim		a given verte es using Dijk			d graph, find shortest pat	hs to other
	Material / Equipment Required	Lab N	Manual				
-	Theory, Formula, Principle, Concept	Gree	dy method				
	Procedure, Program, Activity, Algorithm, Pseudo Code	1 crea 2 for (each vertex v	: Q v in <i>Graph: //</i>	Initialization	om source to v	

		4 prev[v] \leftarrow UNDEFINED // previous node in optimal path from source
		5 add v to Q // All nodes initially in Q (unvisited nodes)
		6 dist[source] \leftarrow 0 // Distance from source to source
		7 while Q is not empty:
		8 $u \leftarrow$ vertex in Q with min dist[u]//Node with the least distance
		9 // will be selected first
		10 remove <i>u</i> from <i>Q</i>
		12 for each neighbor v of u: // where v is still in Q.
		13 $alt \leftarrow dist[u] + length(u, v)$
		14 if alt < dist[v]: // A shorter path to v has been found
		$15 \operatorname{dist}[v] \leftarrow alt$
		16 prev[v] $\leftarrow u$
		17 return dist[], prev[]
	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8		enter the no. of vertices
	Look-up Table,	
		enter the cost of edges
		enter 999 if the edges are not present or selfloop
		0 15 10 999 45 999
		999 0 15 999 20 999
		20 999 0 20 999 999
		999 10 999 0 35 999
		999 999 999 30 0 999
		999 999 999 4 999 0
		enter the source vertex
		6
		source destination cost
		61 49
		62 14
		63 29
		64 4
		65 34
		66 0
	Samplo	
9	Sample Calculations	
10		
	Graphs, Outputs	
	Results & Analysis	
	Application Areas	
	Remarks	
14	Faculty Signature	
	with Date	

Experiment 8 :Minimum Cost Spanning Tree using Kruskal's algorithm

-	Experiment No.:	8	Marks		Date		Date		
	-				Planned		Conducted		
1	Title	Minin	num Cost Sp	anning Tree u	using Kruskal	's algorithm			
2				edy method		napsack,Dijk	stra's Algorith	nm,Kruskal's	
		Algoi	rithm and pri	ms algorithm					
3	Aim	Find	Minimum Co	st Spanning ⁻	Free of a give	n connected	d undirected g	graph using	
		Krusł	kal's algorithr	n.					
4	Material /	Lab N	Manual						
	Equipment								
	Required								
5	Theory, Formula	Gree	Greedy Method						
18CS	L47								

	Principle, Concept	
		ALGORITHM:
	Program, Activity,	KRUSKAL(G):
	Algorithm, Pseudo	1 A = Ø
	Code	2 foreach v \in G.V:
		3 MAKE-SET(v)
		4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
		5 if FIND-SET(u) ≠ FIND-SET(v):
		6 A = A ∪ {(u, v)}
		7 UNION(u, v)
		8 return A
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	
		Enter the number of nodes:
	Output	4
		Enter the adjacency matrix:
		999 20 10 999
		20 999 999 30
		10 999 999 40
		999 30 40 999 Edga11 1 2 cost10
		Edge1: $1 \rightarrow 3$ cost:10 Edge2: $1 \rightarrow 2$ cost:20
		Edge3: $2 \rightarrow 4$ cost:30
		Minimun cost=60
9	Sample	
	Calculations	
	Graphs, Outputs	
	Results & Analysis	
	Application Areas	
	Remarks	
14	Faculty Signature	
	with Date	

Experiment 9 :Minimum Cost Spanning Tree using Prims Algorithm

-	Experiment No.:	12	Marks		Date Planned	Date Conducted
1	Title	Minir	num Cost Sp	anning Tree	using Prims Alg	orithm
2		Algo	rithm and pri	ms algorithr	n	osack,Dijkstra's Algorithm,Kruskal's
3		Find algor		st Spanning	Tree of a given u	undirected graph using Prim's
	Material / Equipment Required	Lab N	Manual			
-	Theory, Formula, Principle, Concept	Gree	dy method			
	Program, Activity, Algorithm, Pseudo Code	MST-	ach u ∈ G.V ' = ∞ NIL			

		Q = Q.V while Q = φ u = EXTRACT-MIN(Q) //minimum priority queue for each v ∈ G.Adj(u) v ∈ Q and w(u, v) < v.key v.π = u
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	v.key = w(u, v)
	Look-up Table, Output	Enter the adjacency matrix: 999 20 10 999 20 999 999 30 10 999 999 40 999 30 40 999 Edge1: 1→3 cost:10 Edge2: 1→2 cost:20 Edge3: 2→4 cost:30 Minimun cost=60
	Sample Calculations	
10	Graphs, Outputs	
	Results & Analysis	
	Application Areas	
	Remarks	
14	Faculty Signature with Date	

Experiment 10 a : All-Pairs Shortest Paths problem

-	Experiment No.:	13	Marks		Date		Date				
					Planned		Conducted				
1	Title	All-Pa	-Pairs Shortest Paths problem								
2	Course Outcomes	Dem	onstrate Dyn	amic Prograi	mming using	0/1 Knapsa	ack,Floyd's Al	gorithm and			
		Trave	elling Sales P	erson proble	m,						
3	Aim	Imple	ement All-Pa	irs Shortest F	aths problen	n using Floyo	d's algorithm				
4	Material /	Lab N	Manual								
	Equipment										
	Required										
5	1 3	Gree	dy Method								
	Principle, Concept										
6			DRITHM:								
					ninimum dist	ances initiali	zed to ∞ (infir	nity)			
	Algorithm, Pseudo										
			$[u][v] \leftarrow w(u, u)$		ht of the edge	e (u,v)					
			each vertex ı	/							
		U	$[V][V] \leftarrow 0$	/							
			k from 1 to $ V $								
		-	i from 1 to V j from 1 to V								
			ist[<i>i</i>][<i>j</i>] > dist[<i>i</i>]								
			$st[i][j] \leftarrow dist[i]$								
		11 en		liki distikiyi							
7	Block, Circuit,										
'	Model Diagram,										
	Reaction Equation,										
	Expected Graph										
8	Observation Table,	Enter	the no. of ve	ertices							

	Look-up Table,	4
	Output	Enter the weight matrix
		0 999 3 999
		2 0 999 999
		999 7 0 1
		6 999 999 0
		all pair shortest path:
		0 10 3 4
		2 0 5 6
		7 7 0 1 6 16 9 0
		0 10 9 0
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 10 b :Travelling Sales Person problem

-	Experiment No.:	14	Marks		Date Planned		Date Conducted				
1	Title	Travelling	avelling Sales Person problem								
2	Course Outcomes		monstrate Dynamic Programming using 0/1 Knapsack,Floyd's Algorithm and avelling Sales Person problem,								
3	Aim	To find th to the sta			oute that visit	s every city o	exactly once a	and returns			
4	Material / Equipment Required	Lab Man	ual								
5	Theory, Formula, Principle, Concept	Dynamic	Program	nming							
6	Program, Activity, Algorithm, Pseudo Code	C ({1}, 1) = for s = 2 to for all sub C (S, 1) = 0 for all j E C (S, j) = r	0 o n do osets S € ∞ S and j ≠ min {C (S	1	of size s and for i € S and i	-					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Output	Enter the 0 10 5 0 6 13 8 8 The Cost 0 10 : 5 0 6 13	Cost Ma 15 9 0 9	atrix 20 10 12 0							

		The Optimal Tour is = 1->2->4->3->1 Minimum Cost = 35
	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
	Faculty Signature with Date	

Experiment 11: Sum of Subset Problem

-	Experiment No.:	15	Marks		Date Planned		Date Conducted					
1	Title	Sum	of Subset Pr	oblem								
2	Course Outcomes		monstrate Backtracking using Sumof Subset and Hamiltonian cycles.									
3	Aim		find a subset of a given set S = {SI, S2,,Sn} of <i>n</i> positive integers whose SUM									
_	Matarial	· ·	ual to a giver 1anual	positive inte	eger d .							
	Material / Equipment	Lab N	lanual									
	Required											
5	Theory, Formula, Principle, Concept	Backt	tracking									
	Procedure,	Algor										
				contain one	element 0.							
	Algorithm, Pseudo				. f							
	Code		be a list cons be the unior		/, for all y in S							
		sort L										
			s empty									
				est element d	of U							
		add y										
					easing order							
					umbers close	to one ano	ther					
				lements grea set y = z and a								
						s output ve	s, otherwise	no				
7	Block, Circuit,											
	Model Diagram,											
	Reaction Equation,											
	Expected Graph											
	Observation Table,	1	the size of t	ne set:								
	Look-up Table,	-	+ + !·- !·-									
		Enter 1 2 5 (creasing orde	er:							
			the required	l sum [.]								
		9		Sam								
		the so	olution to the	e sum of subs	set problem i	S:						
		Subse	et1:		-							
		126										
		Subs	et2:									
		18										
	Sample											
	Calculations											
	Graphs, Outputs											
	Results & Analysis											
12 18CSI	Application Areas											

13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 12: Hamiltonian Cycles using backtracking principle

1 Title Hamiltonian Cycles 2 Course Outcomes Demonstrate Backtracking using Sumof Subset and Hamiltonian cycles. 3 Aim Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of <i>n</i> vertices using backtracking principle. 4 Material /Lab Manual Equipment Required Algorithm: Procedure. Algorithm: Procedure. Program. Activity/ipput: Algorithm: Procedure. Algorithm. Pseudo/A 2D array graph[VIIV] where V is the number of vertices in graph and graph? Code adjacency matrix representation of the graph. A value graphiliji is 1 if there is a direct ed from i to j. otherwise graphiliji is 0. Output: An array pathIVI that should contain the Hamiltonian Path. pathili should represent the ith vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in the graph. 8 Observation Table. Enter No. of Vertices: 6 Look-up Table. Enter No. of Vertices: 6 Output Enter the Edge: 1 1 4 Enter the Edge: 2 3 5 Enter the Edge: 2 3 6 Enter the Edge: 2 6 Cou	-	Experiment No.:	15	Marks		Date Planned		Date Conducted	
 im Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using backtracking principle. Material Clab Manual Clab Manual Required Theory. Formula, Backtracking Principle, Concept Procedure. Algorithm: Program, Activity. Input: Algorithm, PseudoA 2D array graphIVIIV where V is the number of vertices in graph and graph! is adjacency matrix representation of the graph. A value graphIII[j] is 1 if there is a direct ec from it 0 j. otherwise graphIII[j] is 0. Output: An array pathIVI that should contain the Hamiltonian Path. pathIII should represent the lth vertex in the Hamiltonian Cycle in the graph. Block. Circuit, Model Diagram, Reaction Equation. Expected Graph Observation Table. Enter No. of Vertices: 6 Look-up Table. Enter No. of Sedge: 9 Output 12 Block Enter the Edge: 1 13 Enter the Edge: 1 3 Enter the Edge: 2 13 Enter the Edge: 3 4 Enter the Edge: 4 5 Enter the Edge: 4 5 Enter the Edge: 4 5 Hamiltonian Cycle Hamiltonian Cycle Hamiltoni	1	Title	Hami	ltonian Cycl	es				
 undiřected Graph G of n vertices using backtracking principle. Material (Lab Manual Equipment Required / Lab Manual Sequired / S	2	Course Outcomes	Demo	onstrate Bac	ktracking usi	ng Sumof Sul	bset and Ha	miltonian cycle	S.
Equipment Required Required 9 Theory, Formula Backtracking Principle, Concept Algorithm: Program 6 Procedure, Code Algorithm: Negram Program Activity./mput: Algorithm, Pseudo A 2D array graphIVIIV where V is the number of vertices in graph and graphI' Code is adjacency matrix representation of the graph. A value graphIIIJI is 1 if there is a direct ed from i to j. otherwise graphIIIJI is 0. Output: An array pathIV that should contain the Hamiltonian Path. pathII should represent the ith vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in the graph. 7 Block, Circuit Model Circuit Diagram. Reaction 8 Observation Table, Enter No. of Vertices: 6 Look-up 1 Enter the Edge1: 1 2 Enter the Edge2: 1 3 Enter the Edge3: 1 4 Enter the Edge4: 2 3 Enter the Edge4: 2 3 Enter the Edge5: 2 6 Enter the Edge6: 3 4 Enter the Edge6: 3 4 Enter the Edge8: 5 6 Enter the Edge9: 4 5			undir	ected Graph					cted
Principle, Concept		Equipment Required							
Program. Activity.//nout: Algorithm. PseudoA 2D array graph/VI/VI where V is the number of vertices in graph and graph! Code is adjacency matrix representation of the graph. A value graph[i][j] is 1 if there is a direct ed from i to j. otherwise graphIII[j] is 0. Output: An array path/VI that should contain the Hamiltonian Path. path[i] should represent the ith vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Equation. Expected Graph 8 Observation Table.Enter No. of Vertices: 6 Look-up Output 12 Enter the Edge1: 12 Enter the Edge2: 13 Enter the Edge3: 14 Enter the Edge4: 23 Enter the Edge5: 26 Enter the Edge5: 26 Enter the Edge6: 34 Enter the Edge8: 50 Enter the Edge3: 14 Enter the Edge6: 34 Enter the Edge3: 50 Enter the Edge3	5		Back	tracking					
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph 8 Observation Table, Enter No. of Vertices: 6 Look-up Table, Enter No. of Edges: 9 Output 9 Dut Enter the Edge1: 12 Enter the Edge2: 13 Enter the Edge3: 14 Enter the Edge4: 23 Enter the Edge4: 23 Enter the Edge5: 26 Enter the Edge6: 34 Enter the Edge6: 35 Enter the Edge8: 56 Enter the Edge8: 56 Enter the Edge9: 45 9 Hamiltonian Cycle 1>2>6>5>3>4>1 1>2>6->5>4>3>1	6	Program, Activity, Algorithm, Pseudo Code	Input. A 2D is adj matri from other Outpu An ar repre in the	array graph[acency x representa i to j, wise graph[i ut: ray path[V] t sent the ith Hamiltonia	ation of the gr il[j] is 0. hat should co vertex n Path. The co	raph. A value g ontain the Har ode should al	graph[i][j] is : miltonian Pa	1 if there is a dire	ect edge d
8 Observation Table, Enter No. of Vertices: 6 Look-up Table, Enter No. of Edges: 9 Output Enter the Edge1: 12 Enter the Edge2: 13 Enter the Edge3: 14 Enter the Edge4: 23 Enter the Edge5: 26 Enter the Edge6: 34 Enter the Edge6: 35 Enter the Edge8: 56 Enter the Edge9: 45 Hamiltonian Cycle 1>2->6->5>4>1	7	Model Diagram, Reaction Equation,							
	8	Look-up Table, Output	Enter Enter 12 Enter 13 Enter 14 Enter 23 Enter 34 Enter 34 Enter 56 Enter 45 Hami 1>2 1>2	No. of Edge the Edge1: the Edge2: the Edge3: the Edge4: the Edge5: the Edge5: the Edge6: the Edge7: the Edge8: the Edge8: the Edge9:	e }>4>1 }>3>1				
9 Sample	0	Sample							

	Calculations	
10	Graphs, Outputs	
	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 01 : Structure of C program

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1			ire of C p					
2	Course Outcomes	Design	the stru	acture of C pro	ogram			
U U				ucture of C pr	ogram			
4	Material / Equipment Required							
	Principle, Concept			of c program	n to writing th	ie c program		
	Procedure, Program, Activity, Algorithm, Pseudo Code		step 3: step 4:	write prograr save the prog compile f error then co run	gram	ors		
-	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	•						
8	Observation Table, Look-up Table, Output	•		me to jpnce ne first progra	ım in cp lab			
9	Sample Calculations	•	- - -					
10	Graphs, Outputs	•	-					
11	Results & Analysis	•	-					
	Application Areas	•	To write	e the c progra	m			
	Remarks							
	Faculty Signature with Date							

Experiment 02 : Keywords and identifiers

-	Experiment No.:	1	Marks		Date Planned	Date Conducte	d
1	Title	Keyw	ords and ide	ntifiers			
2	Course Outcomes	Desig	n the logic i	or a given pr	oblem		
3	Aim	Exerc	ise on Keyw	ords and ide	ntifiers		
4	Material /	Lab N	1anual				
	Equipment						
	Required						
-					programming		
	Principle, Concept			ntifiers in c p	rogramming		
			1: start				
	Program, Activity,						
	Algorithm, Pseudo						
				e operation	in a,b		
			5: print the re	esult			
		step (6: stop				
	Block, Circuit,						
	Model Diagram,						
	Reaction Equation,						
	Expected Graph						

8	Observation Table,	Enter any 2 number 5,6
	Look-up Table,	The sum of two variables 11
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	In searching and sorting concepts
		in data-structures and python
13	Remarks	
14	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Expt- #	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)		Learning	Bloo ms'	Identified Action Verbs for Learning	on	Assessment Methods to Measure Learning
Α	В	С	D	Ε	F	G	Н
	Write a C++ program to read series of names, one per line, from standard input and write these names spelled in reverse order to the standard output using I/O redirection and pipes. Repeat the exercise using an input file specified by the user instead of the standard input and using an output file specified by the user instead of the standard output.		- L2 - L3 - L4	L4	-	- Lecture - -	- Slip Test - -
	Write a C++ program to read and write student objects with fixed length records and the fields delimited by " ". Implement pack (), unpack (), modify () and search () methods.	-	- L2 - L3 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -
	Write a C++ program to read and write student objects with Variable - Length records using any suitable record structure. Implement pack (), unpack (), modify () and search () methods.		- L2 - L3 - L4	L4	-	- Lecture -	- Assignment -
	Write a C++ program to write student objects with Variable - Length records using any suitable record structure and to read from this file a student record using RRN.		- L2 - L3 - L4	L4	-	- Lecture -	- Slip Test -
	Write a C++ program to implement simple index on primary key for a file of student objects. Implement add (), search (), delete () using the index.		- L2 - L3 - L4	L4	-	- Lecture -	- Slip Test -
	Write a C++ program to implement index on secondary key, the name, for a file of student objects. Implement add (), search (), delete () using the secondary index.		- L2 - L3 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -
7	Write a C++ program to read two lists of names and then match the names in the	3	- L2 - L3	L4	-	- Lecture	- Assignment

	two lists using Co Sequential Match based on a single loop. Output the names common to both the lists.	- L4			- Tutorial -	-
	Write a C++ program to read k Lists of names and merge them using k-way merge algorithm with k = 8.	- L2 - L3 - L4	L4		- Lecture - Tutorial -	- Assignment - -
9	Student should develop mini Project on the topics mentioned below or similar applications Document processing, transaction management, indexing and hashing, buffer management, configuration management. Not limited to these.	- L2 - L3 - L4	L4	-	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

	Table 2. Concept to Outcome – Example Course						
Expt - #	Learning or Outcome from study	Identified Concepts from	Final Concept	Concept Justification (What all Learning	CO Components (1.Action Verb, 2.Knowledge,	Course Outcome	
	of the Content or Syllabus	Content		Happened from the study of Content / Syllabus. A short word for learning or outcome)		Student Should be able to	
Α	1	J	K	L	М	N	
1	-	-	Klystron oscillator	Comprehend the working of Klystron oscillator	- Understand - Klystron Oscillator - -	Understand the working of Klystron Oscillator.	
2	-	-	Microwave transmission lines	Examine the transmission lines using graphical methods	- Transmission Lines - Graphical Methods -	using Graphical methods.	
3	-	-	Multiport networks	Implement the Z, Y and S parameters to Multiport networks	- Multiport Networks - -	Multiport network.	
4	-	-	Microwave passive devices	Understand the working of microwave passive devices	- Microwave Passive	Understand the working of different microwave passive devices.	
5	-	-	Striplines	Have knowledge of micro, parallel and shielded striplines	- Types of Stripline	Understand micro, parallel and shielded striplines.	
6	-	-	Antenna parameters	Compute the antenna design characteristics using the parameters	- Apply - Design Characteristics - -	Describe antenna working using the given parameters.	
7	-		Array of point sources	Extend the antenna parameters to the array of point sources	- Apply - Array of Point Sources 	Describe the working of point sources.	
8	-	-	Electric dipole antennas	Examine the field parameters of electric dipole antennas	- Electric Dipole Antenna	Analyze the working of electric dipole antenna.	
9	-	-	Loop and horn	Explain the working of horn and loop	- Understand - Horn and Loop	Explain the working of horn and loop	

	antennas	antennas	Antenna	antennas.